Mathematics
Ф.И. Перегудов , Ф.П. Тарасенко.. Введение в системный анализ.. Москва: Высшая школа. 1989 368s.
Description: Перегудов Ф.И., Тарасенко Ф.П. Введение в системный анализ. Учебник для вузов. Главы: Возникновение и развитие системных представлений. Модели и моделирование. Системы. Модели систем. Искусственные и естественные системы. Информационные аспекты изучения систем. Роль измерений в создании моделей систем. Выбор (принятие решений). Декомпозиция и агрегирование - процедуры системного анализа. О неформализуемых этапах системного анализа.
Status: хорошее. владельческая подпись. формат увеличен.
Description of seller: тираж 15 тысяч.
Дайсон Ф. . Статистическая теория энергетических уровней сложных систем. . 1963
Description: Москва Иностранная литература 1963г. 124 с. Мягкая издательская обложка., Обычный формат.
Трев Ж.. Лекции по линейным уравнениям в частных производных с постоянными коэффициентами.. 1965
Description: Библиотека сборника математика М. Изд-во Мир. 1965г. 296с. Мягкий переплет, обычный формат. Книга посвящена общей теории дифференциальных уравнений в частных производных с постоянными коэффициентами. Главное внимание уделяется локальным свойствам решений, построению и исследованию различных фундаментальных решений, а также разрешимости в целом. Дано обстоятельное введение в широкий круг современных исследований, в большой степени интересных не только для математиков. Изложение в основном доступно студентам средних курсов Физико-математических факультетов.
Мищенко Е. Ф., Розов Н. Х.. Дифференциальные уравнения с малым параметром и релаксационные колебания.. 1975
Description: М. Наука. 1975.г. 248 с., илл. Палiтурка / переплет: Твердый, Обычный формат.
Марчук. Вычислительные методы в теории переноса. . 1969
Description: Сборник статей под редакцией академика Г. И. Марчука. М. Атомиздат. 1969г. 248 с. Твердый переплет, обычный формат. Тираж - 1.700 экз. Нечасто встречающийся экземпляр (без библиотечных штампов). Освещен широкий круг вопросов по решению кинетических уравнений, приводится физическая постановка и математическая формулировка задачи, методы решения, численная реализация алгоритмов и сравнения различных методов. В одних работах изложены прямые методы решения задач переноса, в других - различные схемы аппроксимации кинетического уравнения и краевых условий. Отражены достижения прикладной и вычислительной математики в решении задач переноса. Особого внимания заслуживают работы по многомерным задачам теории переноса. на 3 страницах небольшие пометки ручкой
Description of seller: на 3 страницах небольшие пометки ручкой
Каплан И.А.. Практические занятия по высшей математике. Часть III.. 1965
Description: Харьков. Издательство Харьковского университета. 1965г. 376с. Палiтурка / переплет: твердый,, увеличенный формат. Интегральное исчисление функций одной независимой переменной. Интегрирование дифференциальных уравнений.
Мартин Гарднер. Математические чудеса и тайны. математические фокусы и головоломки.. Москва: Наука. 1978 127s.
Description: Содержание по главам: глава 1. Математические фокусы с картами. глава 2.Фокусы с мелкими предметами. глава 3.Топологические головоломки. глава 4.Фокусы со специальным снаряжением. глава 5. Исчезновение фигур. раздел 1, Исчезновение фигур. раздел 2. глава 7. Головоломки с отвлеченными числами.
Status: хорошее
Description of seller: Сокращенный перевод с английского В.С. Бермана. Под редакцией Г.Е. Шилова. издание третье. В книге много рисунков,поясняющих текст
Дж. Тейлор. Введение в теорию ошибок. Москва: Мир. 1985 272s.
Description: Тейлор Дж. Введение в теорию ошибок. Книга профессора Колорадского университета (США) является пособием по математической обработке результатов измерений в учебных физических лабораториях. Подробно разъясняются неизбежность ошибок измерений, способы фиксирования результатов измерений и на основе нормального распределения рассматриваются элементы статистической обработки ошибок, обсуждается проблема промахов, взвешивания результатов измерений, метод наименьших квадратов, корреляции, распределение Пуассона и биномиальное распределение, критерий хи-квадрат. В конце каждой главы приведены задачи, для большинства которых в конце книги имеются ответы и решения.
Status: хорошее. но небольшой дефект на обложке,легко устраняемый после заказа,вклейкой фрагмента.
Description of seller: перевол с английского Л.Г. Диденко
Мышкис А. Д.. Лекции по высшей математике. . 1969
Description: Издание 3- е. М. Наука 1969г. 640 с. Палiтурка / переплет: Твердый, Слегка увеличенный формат. Содержание: Величина и функция. Аналитическая геометрия на плоскости. Предел. Непрерывность. Производные. Приближенное решение конечных уравнений. Интерполяция. Определители и системы линейных алгебраических уравнений. Векторы. Комплексные числа и функции. Функции нескольких переменных. Аналитическая геометрия в пространстве. Матрицы и их применение. Применение частных производных. Неопределенный, определенный интегралы. Дифференциальные уравнения. Кратные интегралы. Ряды. Элементы теории вероятностей. Современная вычислительная техника.
Рыбкин Н. . Сборник задач по тригонометрии 8, 9 и 10 классов средней школы. . 1955
Description: С приложением задач по геометрии, требующих применения тригонометрии. Издание 20-е. М.: Учпедгиз 1955г. 100 с. Палiтурка / переплет: Твердый, обычный формат. Утвержден Министерством просвещения СССР.
Смирнов В. И.. Курс высшей математики. Том 2. . 1974
Description: Наука. 1974г. 656с твердый переплет, обычный формат. 734гр Смирнов Владимир Иванович – автор популярного Курса высшей математики (т. 1–5, 1924–1947). В 1948 году за свой труд автор был удостоен Сталинской премии второй степени. Этот фундаментальный учебник по высшей математике, переведенный на множество языков мира, отличается, с одной стороны, систематичностью и строгостью изложения, а с другой – простым языком, подробными пояснениями и многочисленными примерами. Содержание: Глава I. Обыкновенные дифференциальные уравнения. Глава II. Линейные дифференциальные уравнения и дополнительные сведения по теории дифференциальных уравнений. Глава III. Кратные и криволинейные интегралы. Несобственные интегралы и интегралы, зависящие от параметра. Глава IV. Векторный анализ и теория поля. Глава V. Основы дифференциальной геометрии. Глава VI. Ряды Фурье. Глава VIII. Уравнения с частными производными математической физики. Алфавитный указатель.
Вышенский . Сборник задач киевских математических олимпиад.. 1984
Description: Вышенский В., Карташов Н., Михайловский В. и др. Сборник задач киевских математических олимпиад. К. Вища школа 1984г. 240 с. Палiтурка / переплет: Твердый,, Обычный формат. Книга содержит задачи, предлагавшиеся на киевских городских математических олимпиадах, проводимых Киевским университетом, в 1935 — 1983 гг. Материал книги охватывает все разделы школьного курса, как традиционные (делимость чисел, решение уравнений и систем уравнений, свойства геометрических фигур на плоскости и в пространстве, геометрические построения), так и новые, введенные в школьную программу сравнительно недавно (метод координат, векторная алгебра, числовые последовательности, исследование функций с помощью производной). К наиболее сложным задачам даны подробные решения. Для учителей общеобразовательных школ, руководителей школьных математических кружков, а также для школьников и всех тех, кто любит решать интересные математические задачи. Книга может быть использована также при подготовке к конкурсным экзаменам.
Ст. Барр. Россыпи головоломок. Москва: Мир. 1987 415s.
Description: Барр Ст. Россыпи головоломок. Пер.с англ. Ю. Н. Сударева. 3-е изд. Сборник, составлен из трех небольших книжек по занимательной математике известного американского писателя и популяризатора Стивена Барра.
Status: хорошее
Description of seller: Книга расчитана на самые широкие круги читателей, особенно любителей занимательной математики. Книга иллюстрирована. Перевод с английского Ю. Н. Сударева. 3-е изд.
Жиль Ж., Пелегрен М., Декольн П.. Теория и техника следящих систем. . 1961
Description: Перевод Баткова А.М., Ускова А.С. и Агеевой М.И.. Под редакцией Солодовникова В.В.. М. Машгиз. 1961г. 804с. Твердый переплет, обычный формат.
Краснов М.Л., Киселев А.И., Макаренко Г.И. . Функции комплексного переменного. Операционное исчисление. Теория устойчивости. . 1971
Description: Краснов М.Л., Киселев А.И., Макаренко Г.И. Функции комплексного переменного. Операционное исчисление. Теория устойчивости. Серия: Избранные главы высшей математики для инженеров и студентов ВТУЗов. Задачи и упражнения М. Наука 1971г. 256 с., илл. Палiтурка / переплет: твердый,,, обычный формат. Предлагаемый сборник задач содержит около 900 задач и упражнений. Основной материал задачника составлен в соответствии с учебником И.Г.Арамановича, Г.Л.Лунца, Л.Э.Эльсгольца `Функции комплексного переменного. Операционное исчисление. Теория устойчивости`.
А. Кофман , Р. Фор.. Займемся исследованием операций. Москва: Мир. 1966 278s.
Description: Книга написана в занимательной форме по исследованиям операций. Сначала описы- вается житейская ситуация,а затем излагается применяемый для анализа данного случая математический аппарат.
Status: хорошее и книга и суперобложка.
Г. Бонди. Относительность и здравый смысл.. Москва: Мир. 1967 162s.
Description: Бонди Г. Относительность и здравый смысл. Автор настоящей книги, профессор Лондонского университета Герман Бонди - один из крупнейших современных английских ученых. Он автор многих важных и сложных трудов по общей теории относительности и космологии, руководитель лондонской гравитационной группы. Он больше склонен к глубоким математическим исследованиям, и замечательно то, что ему так удалось это новое изложение специальной (частной) теории относительности Эйнштейна, построенное на базе остроумных `практических` примеров.
Status: хорошее
Description of seller: Перевод с английского и предисл. Н.Мицкевича.
Канторович А.В., Крылов В.И.. Приближенные методы высшего анализа. . 1962
Description: Изд. 5-е, исправленное. Ред. Акилов Г.П. М. Физматгиз 1962г. 708 с. Палiтурка / переплет: твердый, увеличенный формат. Задачи математической физики получили широкое применение в самых различных областях техники. Обычно в курсах математической физики излагаются общие методы решения, имеющие чисто теоретический характер и не дающие фактической возможности действительного нахождения решения таких задач, а также классические примеры точных решений для простейших случаев. В практических же проблемах техники часто встречаются задачи, где точное решение либо не может быть найдено, либо имеет настолько сложное строение, что им трудно пользоваться при расчетах. Приближенные методы решения задач математической физики, в особенности метод сеток и вариационные методы, развитые в начале ХХ столетия, были встречены техниками с большим интересом и сразу получили широкое распространение. Основные достоинства приближенных методов состояли в том, что они являлись универсальными и эффективными, так как позволяли находить приближенное решение для широкого класса случаев и при применении требовали простых и вполне осуществимых вычислений. В книге сделана попытка систематического изложения главнейших приближенных эффективных методов. Наряду с методами решения уравнений в частных производных, значительное место в ней отведено изложению комфортного отображения и приближенного решения интегральных уравнений.
Ю.В. Прохоров , Ю.А. Розанов. Теория вероятностеей. Основные понятия, предельные теоремы. случайные процессы. серия Справочная математическая библиотека.. Москва: Наука. 1973 496s.
Description: Прохоров Ю. В., Розанов Ю. А. Теория вероятностей. Основные понятия. Предельные теоремы. Случайные процессы. Справочная математическая библиотека. Книга представляет собой обзор важнейших результатов, методов и направлений современной теории вероятностей. Основные понятия теории вероятностей, важнейшие теоретико-вероятностные модели, некоторые методы оптимального регулирования, линейная фильтрация, элементы теории передачи стационарных сообщений по каналам связи - вот далеко не полный перечень разделов, представляющих интерес для читателей, соприкасающихся с теорией вероятностей, но не являющихся специалистами в этой области. В книге есть и разделы, предназначенные читателям, работающим в теории вероятностей и смежных направлениях, сюда относятся основания теории, некоторые аспекты общей теории случайных процессов, предельные теоремы и др.
Status: хорошее
Description of seller: издание второе переработанное.тираж 40000 экз.
Ландис Е. М. . Уравнения второго порядка эллиптического и параболического типов. . 1971
Description: М. Наука. 1971г. 288 с. Палiтурка / переплет: Твердый, Обычный формат. Книга посвящена теории эллиптических и параболических уравнений 2-го порядка, главным образом, линейных. Значительное внимание уделено вопросам качественного поведения решений вблизи граничных точек и на бесконечности.
Самарский А.А., Андреев В.Б. . Разностные методы для эллиптических уравнений.. 1976
Description: М. Наука 1976г. 352 с. Палiтурка / переплет: твердый, обычный формат. В книге излагаются различные методы построения разностных схем для типичных задач математической физики, рассмотрены метод баланса, вариационно-разностные методы, методы аппроксимации функционала, метод повышения порядка погрешности аппроксимации путем аппроксимации на решении и др.
Кириллов А.А.. Пределы. . 1973
Description: Серия: Библиотечка физико-математической школы. Выпуск 2. Издание второе, переработанное. М. Наука 1973г. 96 с., илл. Палiтурка / переплет: мягкий, обычный формат. Книга состоит из задач: подготовительных, связанных с определнием предела, на вычисление пределов. Книга может служить учебником по теме ``Пределы``. При составлении книги автор широко пользовался ``математическим фольклором``.
Розенфельд Б.А.,Сергеева Н.Д.. Стереографическая проекция.. 1973
Description: Розенфельд Б.А.,Сергеева Н.Д. Стереографическая проекция. 1973. 46 с.
Шипачев В.С.. Высшая математика. . 1985
Description: Учебник для немат. спец. вузов М. Высшая школа 1985г. 472 с. Палiтурка / переплет: твердый,, слегка увеличенный формат. В учебнике излагаются элементы теории множеств, теория пределов, элементы аналитической геометрии и высшей алгебры, основы дифференциального и интегрального исчисления функций одной и нескольких переменных, теории рядоз и дифференциальных уравнений. Теоретический материал сопровождается большим количеством примеров и задач.
Выгодский М. . Справочник по элементарной математике. . 1965
Description: Таблицы, арифметика, алгебра, геометрия, тригонометрия, функции и графики. Издание 16-е. М. Наука 1965г. 424 с. Палiтурка / переплет: Тканевый корешок, картонный, уменьшенный формат. Этот справочник имеет двоякое назначение. Во-первых, здесь можно навести `моментальную` справку: что такое тангенс, как вычислить процент, каковы формулы для корней квадратного уравнения и т. п. Все определения, правила, формулы и теоремы сопровождаются примерами. Всюду, где это требуется, указывается, в каких случаях и как надо применять то или иное правило, каких оплошностей следует опасаться и т. п. Во-вторых, этот справочник, по замыслу автора, мого бы служить общедоступным пособием для повторения элементарной математики и даже для первого ознакомления с ее практическими применениями