Mathematics
Камке Э.. Справочник по обыкновенным дифференциальным уравнениям. . 1976
Description: Пер.с нем. С.В. Фомина. Изд. 5-е, стереотипное. М. Наука 1976г. 576 с. Палiтурка / переплет: твердый, увеличенный формат. Краткое содержание: Дифференциальные уравнения первого порядка. Произвольные системы дифференциальных уравнений, разрешенных относительно производных. Системы линейных дифференциальных уравнений. Произвольные дифференциальные уравнения n-го порядка. Линейные дифференциальные уравнения n-го порядка. Дифференциальные уравнения второго порядка. Линейные дифференциальные уравнения 3-го и 4-го порядка. Приближенные методы интегрирования дифференциальных уравнений. Краевые задачи и задачи о собственных значениях для линейных дифференциальных уравнений n-го порядка, систем линейных дифференциальных уравнений, уравнений низших порядков. Линейные дифференциальные уравнения 1-го, 2-го, 3-го, 4-го, 5-го и более высоких порядков. Нелинейные дифференциальные уравнения 2-го, 3-го и более высоких порядков. Системы линейных и нелинейных дифференциальных уравнений.
Петровский И. Г.. Лекции об уравнениях с частными производными. . 1961
Description: М. Государственное издательство физико-математической литературы. 1961г. 400 с. Твердый переплет, обычный формат. Классификация уравнений. Гиперболические уравнения (Задача Коши в области неаналитических функций. Колебания ограниченных тел). Эллиптические уравнения. Параболические уравнения.
Ансельм А.И.. Введение в теорию полупроводников. . 1962
Description: М Физматгиз 1962г. 364 с. Твердый переплет, Увеличенный формат. Основное внимание в книге уделено вопросам колебаний кристаллической решетки, законам движения электрона в идеальном и возмущенном периодических полях, кинетическому уравнению и явлениям переноса(прохождению тока). Особенностью книги является то, что на основе простейших сведений все формулы выводятся.
Маслов В.П.. Комплексный метод ВКБ в нелинейных уравнениях. . 1977
Description: М. Наука 1977г. 384 с. твердый переплет, обычный формат. В монографии развивается новый асимптотический метод получения квазиклассических решений многомерных нелинейных уравнений. В качестве примеров рассматриваются нелинейные уравнения квантовой механики, уравнения кристаллической решетки и др. Полученные решения локализованы в окрестности некоторых кривых или поверхностей. Конструкция таких решений опирается на изложенный в I части гамильтонов формализм механики узких пучков и известные солитонные решения соответствующих двумерных задач. Книга предназначена научным работникам в области математики и ее приложений, а также физикам и механикам.
Прохоров Ю.В., Розанов Ю.А.. Теория вероятностей. Основные понятия. Предельные теоремы.. 1967
Description: Прохоров Ю.В., Розанов Ю.А. Теория вероятностей. Основные понятия. Предельные теоремы. Случайные процессы. М. Наука 1967г. 496 с. Палiтурка / переплет: твердый, обычный формат. Книга представляет собой обзор важнейших результатов, методов и направлений современной теории вероятностей. Основные понятия теории вероятностей, важнейшие теоретико-вероятностные модели, некоторые методы оптимального регулирования, линейная фильтрация, элементы теории передачи стационарных сообщений по каналам связи - вот далеко не полный перечень разделов, представляющих интерес для читателей, соприкасающихся с теорией вероятностей, но не являющихся специалистами в этой области. В книге есть и разделы, предназначенные читателям, работающим в теории вероятностей и смежных направлениях, сюда относятся основания теории, некоторые аспекты общей теории случайных процессов, предельные теоремы и др.
Владимиров В.С.. Уравнения математической физики. . 1971
Description: Издание 2-е. М. Наука 1971г. 509 с. Палiтурка / переплет: Твердый, Обычный формат.
Description of seller: разводы от воды в начале книги
Арсенин В.Я. . Методы математической физики и специальные функции.. 1974
Description: Учеб. пособ. для втузов. М. Наука 1974г. 432 с. Палiтурка / переплет: Твердый, Обычный формат. Книга предназначается для студентов инженерно-физических, физико-технических и других специальностей с повышенной физико-математической подготовкой и инженеров этих профилей. В ней достаточно подробно излагаются основные методы решения задач математической физики (методы Фурье, функций Грина, характеристик, потенциалов, интегральных уравнений и др.) и специальные функции - цилиндрические, сферические, ортогональные полиномы, гамма-функция и начальные сведения о гипергеометрических функциях. Метод характеристик излагается для систем линейных и квазилинейных уравнений. Рассматривается понятие корректно и некорректно поставленных задач. Для интегральных уравнений первого рода дается устойчивый метод приближенного решения (метод регуляризации).
Бермант А.Ф.. Краткий курс математического анализа. . 1964
Description: Уч.для втузов.При ред.участии И.Г.Арамановича. М. Наука 1964г. 664 с. Твердый переплет, увеличенный формат. Учебное пособие излагает основные разделы математического анализа, приводит факультативный материал по тем разделам, которые во ВТУЗах излагаются в сокращенном объеме, содержит обширный список литературы по математическому анализу. Изложение сопровождается примерами и задачами
Бронштейн И.Н., Семендяев К.А.. Справочник по математике для инженеров и учащихся втузов. 1986
Description: М. Наука 1986г. 544 с. Палiтурка / переплет: Твердый, Увеличенный формат
Федорюк М.В.. Метод перевала. . 1977
Description: Главная редакция физико-математической литературы. М. Наука 1977г. 368 с. Палiтурка / переплет: твердый, увеличенный формат. В книге рассмотрены основные методы асимптотических оценок интегралов, содержащих большой параметр: метод Лапласа, метод стационарной базы, метод перевала, как в одномерном, так и в многомерных случаях.
Клетеник Д.В.. Сборник задач по аналитической геометрии.. 1972
Description: Редакция Физико-математической литературы. 1972г. 240 с.
Бергман С.. Интегральные операторы в теории линейных уравнений с частными производными.. 1964
Description: Серия: Библиотека сборника Математика. Перевод с английского Маркушевич Л.А.. Под редакцией Данилюка И.И.. М. Изд-во Мир. 1964г. 305с. Мягкий переплет, обычный формат.
Ф.И. Перегудов , Ф.П. Тарасенко.. Введение в системный анализ.. Москва: Высшая школа. 1989 368s.
Description: Перегудов Ф.И., Тарасенко Ф.П. Введение в системный анализ. Учебник для вузов. Главы: Возникновение и развитие системных представлений. Модели и моделирование. Системы. Модели систем. Искусственные и естественные системы. Информационные аспекты изучения систем. Роль измерений в создании моделей систем. Выбор (принятие решений). Декомпозиция и агрегирование - процедуры системного анализа. О неформализуемых этапах системного анализа.
Status: хорошее. владельческая подпись. формат увеличен.
Description of seller: тираж 15 тысяч.
Дайсон Ф. . Статистическая теория энергетических уровней сложных систем. . 1963
Description: Москва Иностранная литература 1963г. 124 с. Мягкая издательская обложка., Обычный формат.
Трев Ж.. Лекции по линейным уравнениям в частных производных с постоянными коэффициентами.. 1965
Description: Библиотека сборника математика М. Изд-во Мир. 1965г. 296с. Мягкий переплет, обычный формат. Книга посвящена общей теории дифференциальных уравнений в частных производных с постоянными коэффициентами. Главное внимание уделяется локальным свойствам решений, построению и исследованию различных фундаментальных решений, а также разрешимости в целом. Дано обстоятельное введение в широкий круг современных исследований, в большой степени интересных не только для математиков. Изложение в основном доступно студентам средних курсов Физико-математических факультетов.
Мищенко Е. Ф., Розов Н. Х.. Дифференциальные уравнения с малым параметром и релаксационные колебания.. 1975
Description: М. Наука. 1975.г. 248 с., илл. Палiтурка / переплет: Твердый, Обычный формат.
Марчук. Вычислительные методы в теории переноса. . 1969
Description: Сборник статей под редакцией академика Г. И. Марчука. М. Атомиздат. 1969г. 248 с. Твердый переплет, обычный формат. Тираж - 1.700 экз. Нечасто встречающийся экземпляр (без библиотечных штампов). Освещен широкий круг вопросов по решению кинетических уравнений, приводится физическая постановка и математическая формулировка задачи, методы решения, численная реализация алгоритмов и сравнения различных методов. В одних работах изложены прямые методы решения задач переноса, в других - различные схемы аппроксимации кинетического уравнения и краевых условий. Отражены достижения прикладной и вычислительной математики в решении задач переноса. Особого внимания заслуживают работы по многомерным задачам теории переноса. на 3 страницах небольшие пометки ручкой
Description of seller: на 3 страницах небольшие пометки ручкой
Каплан И.А.. Практические занятия по высшей математике. Часть III.. 1965
Description: Харьков. Издательство Харьковского университета. 1965г. 376с. Палiтурка / переплет: твердый,, увеличенный формат. Интегральное исчисление функций одной независимой переменной. Интегрирование дифференциальных уравнений.
Мартин Гарднер. Математические чудеса и тайны. математические фокусы и головоломки.. Москва: Наука. 1978 127s.
Description: Содержание по главам: глава 1. Математические фокусы с картами. глава 2.Фокусы с мелкими предметами. глава 3.Топологические головоломки. глава 4.Фокусы со специальным снаряжением. глава 5. Исчезновение фигур. раздел 1, Исчезновение фигур. раздел 2. глава 7. Головоломки с отвлеченными числами.
Status: хорошее
Description of seller: Сокращенный перевод с английского В.С. Бермана. Под редакцией Г.Е. Шилова. издание третье. В книге много рисунков,поясняющих текст
Дж. Тейлор. Введение в теорию ошибок. Москва: Мир. 1985 272s.
Description: Тейлор Дж. Введение в теорию ошибок. Книга профессора Колорадского университета (США) является пособием по математической обработке результатов измерений в учебных физических лабораториях. Подробно разъясняются неизбежность ошибок измерений, способы фиксирования результатов измерений и на основе нормального распределения рассматриваются элементы статистической обработки ошибок, обсуждается проблема промахов, взвешивания результатов измерений, метод наименьших квадратов, корреляции, распределение Пуассона и биномиальное распределение, критерий хи-квадрат. В конце каждой главы приведены задачи, для большинства которых в конце книги имеются ответы и решения.
Status: хорошее. но небольшой дефект на обложке,легко устраняемый после заказа,вклейкой фрагмента.
Description of seller: перевол с английского Л.Г. Диденко
Мышкис А. Д.. Лекции по высшей математике. . 1969
Description: Издание 3- е. М. Наука 1969г. 640 с. Палiтурка / переплет: Твердый, Слегка увеличенный формат. Содержание: Величина и функция. Аналитическая геометрия на плоскости. Предел. Непрерывность. Производные. Приближенное решение конечных уравнений. Интерполяция. Определители и системы линейных алгебраических уравнений. Векторы. Комплексные числа и функции. Функции нескольких переменных. Аналитическая геометрия в пространстве. Матрицы и их применение. Применение частных производных. Неопределенный, определенный интегралы. Дифференциальные уравнения. Кратные интегралы. Ряды. Элементы теории вероятностей. Современная вычислительная техника.
Рыбкин Н. . Сборник задач по тригонометрии 8, 9 и 10 классов средней школы. . 1955
Description: С приложением задач по геометрии, требующих применения тригонометрии. Издание 20-е. М.: Учпедгиз 1955г. 100 с. Палiтурка / переплет: Твердый, обычный формат. Утвержден Министерством просвещения СССР.
Смирнов В. И.. Курс высшей математики. Том 2. . 1974
Description: Наука. 1974г. 656с твердый переплет, обычный формат. 734гр Смирнов Владимир Иванович – автор популярного Курса высшей математики (т. 1–5, 1924–1947). В 1948 году за свой труд автор был удостоен Сталинской премии второй степени. Этот фундаментальный учебник по высшей математике, переведенный на множество языков мира, отличается, с одной стороны, систематичностью и строгостью изложения, а с другой – простым языком, подробными пояснениями и многочисленными примерами. Содержание: Глава I. Обыкновенные дифференциальные уравнения. Глава II. Линейные дифференциальные уравнения и дополнительные сведения по теории дифференциальных уравнений. Глава III. Кратные и криволинейные интегралы. Несобственные интегралы и интегралы, зависящие от параметра. Глава IV. Векторный анализ и теория поля. Глава V. Основы дифференциальной геометрии. Глава VI. Ряды Фурье. Глава VIII. Уравнения с частными производными математической физики. Алфавитный указатель.
Вышенский . Сборник задач киевских математических олимпиад.. 1984
Description: Вышенский В., Карташов Н., Михайловский В. и др. Сборник задач киевских математических олимпиад. К. Вища школа 1984г. 240 с. Палiтурка / переплет: Твердый,, Обычный формат. Книга содержит задачи, предлагавшиеся на киевских городских математических олимпиадах, проводимых Киевским университетом, в 1935 — 1983 гг. Материал книги охватывает все разделы школьного курса, как традиционные (делимость чисел, решение уравнений и систем уравнений, свойства геометрических фигур на плоскости и в пространстве, геометрические построения), так и новые, введенные в школьную программу сравнительно недавно (метод координат, векторная алгебра, числовые последовательности, исследование функций с помощью производной). К наиболее сложным задачам даны подробные решения. Для учителей общеобразовательных школ, руководителей школьных математических кружков, а также для школьников и всех тех, кто любит решать интересные математические задачи. Книга может быть использована также при подготовке к конкурсным экзаменам.
Ст. Барр. Россыпи головоломок. Москва: Мир. 1987 415s.
Description: Барр Ст. Россыпи головоломок. Пер.с англ. Ю. Н. Сударева. 3-е изд. Сборник, составлен из трех небольших книжек по занимательной математике известного американского писателя и популяризатора Стивена Барра.
Status: хорошее
Description of seller: Книга расчитана на самые широкие круги читателей, особенно любителей занимательной математики. Книга иллюстрирована. Перевод с английского Ю. Н. Сударева. 3-е изд.