Mathematics
Перельман Я.. Живая математика. . 1970
Description: Математические рассказы и головоломки. Под ред.и с дополнениями В.Г.Болтянского М. Наука 1970г. 160 с., илл. Палiтурка / переплет: мягкий, обычный формат. Здесь собраны разнообразные математические головоломки, многие из которых облечены в форму маленьких рассказов. Для их решения достаточно знакомства с элементарной арифметикой ипростейшими сведениями из геометрии.
Бугров Я. С., Никольский С. М.. Дифференциальные уравнения. Кратные интегралы. Ряды. Функции комплексного переменного.. 1981
Description: Учебник для вузов. 1981г. 512 с. твердый переплет,, обычный формат. Разделы: Обыкновенные дифференциальные уравнения. Кратные интегралы. Векторный анализ. Ряды и интеграл Фурье. Уравнения математической физики, Теория функций комплексного переменного. Операционные исчисления. Обобщенные функции.
Мищенко Е. Ф., Розов Н. Х.. Дифференциальные уравнения с малым параметром и релаксационные колебания.. 1975
Description: М. Наука. 1975.г. 248 с., илл. Палiтурка / переплет: Твердый, Обычный формат.
Реньи А.. Диалоги о математике. . 1969
Description: Пер. с англ. Д.Б. Гнеденко, Е.А. Масловой. Серия: В мире науки и техники. М. Мир 1969г. 96 с., илл. Палiтурка / переплет: мягкий, обычный формат. Предлагаемая вниманию читателя книга написана известным венгерским математиком, профессором Будапештского университета Альфредом Реньи, и посвящена многочисленным философским проблемам математики. Каков предмет математики? Каково ее отношение к действительности? Как возникают ее понятия? На эти и многие другие вопросы автор дает определенные и обоснованные ответы. А.Реньи, благодаря оригинальной форме изложения, не поучает читателя, а как бы беседует с ним, заранее предугадывая возможные сомнения, и в результате читатель сам становится участником диалога и воспринимает обсуждаемые проблемы как близкие своим интересам. Книга предназначена самому широкому кругу читателей, интересующихся историей и методологией математики.
Райхмист Р. Б. . Графики функций. . 1991
Description: Справочное пособие для вузов. Москва Высшая школа 1991г. 160 с. Палiтурка / переплет: Мягкий, Обычный формат. В пособии рассматриваются различные классы функций и методы построения их графиков. Особое внимание уделено графикам функций, заданных неэлементарно (например с помощью пределов), заданных параметрически и т. п. В основном приводятся графики функций, широко используемых в различных областях инженерных знаний.
Бейтмен Г., Эрдейи А.. Высшие трансцендентные функции. Том 2.. 1974
Description: Преобразования Бесселя. Интегралы от специальных функций. Серия: Справочная математическая библиотека. М. Наука 1974г. 296 с. Палiтурка / переплет: твердый, увеличенный формат. Во втором томе содержатся таблицы преобразований Бесселя, римана-Лиувилля, Вейля, Стилтьеса, Гильберта, а также таблицы интгреалов от специальных функций. По полноте охвата это издание уникально.
Шипачев В.С.. Высшая математика. . 1985
Description: Учебник для немат. спец. вузов М. Высшая школа 1985г. 472 с. Палiтурка / переплет: твердый,, слегка увеличенный формат. В учебнике излагаются элементы теории множеств, теория пределов, элементы аналитической геометрии и высшей алгебры, основы дифференциального и интегрального исчисления функций одной и нескольких переменных, теории рядоз и дифференциальных уравнений. Теоретический материал сопровождается большим количеством примеров и задач.
Овчинников П.Ф., Яремчук Ф.П., Михайленко В.М.. Высшая математика. 1989
Description: Дифференциальные уравнения. Операционное исчисление. Ряды и их приложения. Устойчивость по Ляпунову. Уравнения математической физики. Оптимизация и управление. Теория вероятностей. Численные методы. К. Вища школа 1989г. 680 с.
Ансельм А.И.. Введение в теорию полупроводников. . 1962
Description: М Физматгиз 1962г. 364 с. Твердый переплет, Увеличенный формат. Основное внимание в книге уделено вопросам колебаний кристаллической решетки, законам движения электрона в идеальном и возмущенном периодических полях, кинетическому уравнению и явлениям переноса(прохождению тока). Особенностью книги является то, что на основе простейших сведений все формулы выводятся.
Балакришнан А.. Введение в теорию оптимизации в гильбертовом пространстве. . 1974
Description: Пер. с англ. Э.Л. Наппельбаума. М. Мир 1974г. 260 с. Палiтурка / переплет: мягкий, обычный формат. Книга содержит сжатое и ясное изложение методов функционального анализа, используемых в современных разделах теории управления.