Mathematics
Стоян Ю.Г., Яковлев С.В.. Математические модели и оптимизационные методы геометрического проектирования. . 1986
Description: Стоян Ю.Г., Яковлев С.В. Математические модели и оптимизационные методы геометрического проектирования. К.: Наукова думка, 1986г. 268 с. твердый переплет,, Слегка увеличенный формат. В монографии на основе формализации понятия геометрической информации и введенного пространства информации предлагается единый подход к исследованию задач геометрического проектирования. В зависимости от вида отображения геометрической информации выделяются классы задач геометрического проектирования.
Румшиский Л.З.. Математическая обработка результатов эксперимента. 1971
Description: М.: Наука, Физматлит, 1971. — 192 с. Настоящее справочное руководство имеет своей целью дать экспериментатору необходимые сведения по основным методам обработки и анализа результатов опыта. Все рекомендации сопровождаются примерами их практического применения с указаниями об экономных методах расчета. Книга весьма полезна для начинающих знакомство с различными методами статистического анализа собираемых данных.
Попов Ю.П., Пухначев Ю.В.. Математика в образах.. 1989
Description: Научно-популярное издание. М.: Знание 1989г. 208 с. Палiтурка / переплет: Мягкий, обычный формат. Математические формулы - лишь удобный язык для изложения идей и методов математики. Сами же эти идеи и методы можно описать, используя привычные и наглядные образы из окружающей жизни. Следуя этому принципу авторы в доступной и увлекательной форме излагают основные понятия теории множеств, числовых рядов, дифференциального и интегрального исчисления и других разделов математики. Книга рассчитана на слушателей народных университетов естественнонаучных знаний и широкий круг читателей.
Рождественский Б.Л.. Лекции по математическому анализу. . 1972
Description: М. Наука 1972г. 544с. Твердый издательский переплет, Обычный формат. Основное внимание уделяется глубокому изложению основных понятий анализа и методов качественного исследования. В связи с запросами вычислительной математики широко освещаются методы приближенных вычислений, основанные на теоремах и понятиях математического анализа.
Макки Дж.. Лекции по математическим основам квантовой механики. 1965
Description: Серия "Библиотека сборника "Математика". М., Мир, 1965 г. 222 с. Cостояние отличное.
Трев Ж.. Лекции по линейным уравнениям в частных производных с постоянными коэффициентами.. 1965
Description: Библиотека сборника математика М. Изд-во Мир. 1965г. 296с. Мягкий переплет, обычный формат. Книга посвящена общей теории дифференциальных уравнений в частных производных с постоянными коэффициентами. Главное внимание уделяется локальным свойствам решений, построению и исследованию различных фундаментальных решений, а также разрешимости в целом. Дано обстоятельное введение в широкий круг современных исследований, в большой степени интересных не только для математиков. Изложение в основном доступно студентам средних курсов Физико-математических факультетов.
Мышкис А. Д.. Лекции по высшей математике. . 1969
Description: Издание 3- е. М. Наука 1969г. 640 с. Палiтурка / переплет: Твердый, Слегка увеличенный формат. Содержание: Величина и функция. Аналитическая геометрия на плоскости. Предел. Непрерывность. Производные. Приближенное решение конечных уравнений. Интерполяция. Определители и системы линейных алгебраических уравнений. Векторы. Комплексные числа и функции. Функции нескольких переменных. Аналитическая геометрия в пространстве. Матрицы и их применение. Применение частных производных. Неопределенный, определенный интегралы. Дифференциальные уравнения. Кратные интегралы. Ряды. Элементы теории вероятностей. Современная вычислительная техника.
Петровский И. Г.. Лекции об уравнениях с частными производными. . 1961
Description: М. Государственное издательство физико-математической литературы. 1961г. 400 с. Твердый переплет, обычный формат. Классификация уравнений. Гиперболические уравнения (Задача Коши в области неаналитических функций. Колебания ограниченных тел). Эллиптические уравнения. Параболические уравнения.
Смирнов В. И.. Курс высшей математики. Том 2. . 1974
Description: Наука. 1974г. 656с твердый переплет, обычный формат. 734гр Смирнов Владимир Иванович – автор популярного Курса высшей математики (т. 1–5, 1924–1947). В 1948 году за свой труд автор был удостоен Сталинской премии второй степени. Этот фундаментальный учебник по высшей математике, переведенный на множество языков мира, отличается, с одной стороны, систематичностью и строгостью изложения, а с другой – простым языком, подробными пояснениями и многочисленными примерами. Содержание: Глава I. Обыкновенные дифференциальные уравнения. Глава II. Линейные дифференциальные уравнения и дополнительные сведения по теории дифференциальных уравнений. Глава III. Кратные и криволинейные интегралы. Несобственные интегралы и интегралы, зависящие от параметра. Глава IV. Векторный анализ и теория поля. Глава V. Основы дифференциальной геометрии. Глава VI. Ряды Фурье. Глава VIII. Уравнения с частными производными математической физики. Алфавитный указатель.
Суворов И.Ф.. Курс высшей математики для техникумов.. 1967
Description: Седьмое изд. М Высшая школа 1967г. 408 с. Палiтурка / переплет: Твердый, Обычный формат В данном, седьмом, издании Курс высшей математики для техникумов приведен в соответствие с программой по математике для техникумов, утвержденной 21 апреля 1966 г. В соответствии с программой в Курс внесены вновь параграфы: понятие об уравнении линии, обзор свойств и графиков основных элементарных функций, наибольшее и наименьшее значения функции на отрезке, интегрирование по частям, среднее значение функции на отрезке, плошать сегмента параболы, площадь эллипса. Внесена новая глава: дифференциальные уравнения. Весь новый материал иллюстрируется примерами и решениями задач и снабжен задачами и упражнениями для решения их студентами. Старый текст в немногих отдельных местах поправлен или частично переработан с заменой формулировок и доказательств новыми, более краткими и доступными, в некоторых случаях приведены дополнительно примеры.