Mathematics
Петровский И. Г.. Лекции об уравнениях с частными производными. . 1961
Description: М. Государственное издательство физико-математической литературы. 1961г. 400 с. Твердый переплет, обычный формат. Классификация уравнений. Гиперболические уравнения (Задача Коши в области неаналитических функций. Колебания ограниченных тел). Эллиптические уравнения. Параболические уравнения.
Мышкис А. Д.. Лекции по высшей математике. . 1969
Description: Издание 3- е. М. Наука 1969г. 640 с. Палiтурка / переплет: Твердый, Слегка увеличенный формат. Содержание: Величина и функция. Аналитическая геометрия на плоскости. Предел. Непрерывность. Производные. Приближенное решение конечных уравнений. Интерполяция. Определители и системы линейных алгебраических уравнений. Векторы. Комплексные числа и функции. Функции нескольких переменных. Аналитическая геометрия в пространстве. Матрицы и их применение. Применение частных производных. Неопределенный, определенный интегралы. Дифференциальные уравнения. Кратные интегралы. Ряды. Элементы теории вероятностей. Современная вычислительная техника.
Трев Ж.. Лекции по линейным уравнениям в частных производных с постоянными коэффициентами.. 1965
Description: Библиотека сборника математика М. Изд-во Мир. 1965г. 296с. Мягкий переплет, обычный формат. Книга посвящена общей теории дифференциальных уравнений в частных производных с постоянными коэффициентами. Главное внимание уделяется локальным свойствам решений, построению и исследованию различных фундаментальных решений, а также разрешимости в целом. Дано обстоятельное введение в широкий круг современных исследований, в большой степени интересных не только для математиков. Изложение в основном доступно студентам средних курсов Физико-математических факультетов.
Макки Дж.. Лекции по математическим основам квантовой механики. 1965
Description: Серия "Библиотека сборника "Математика". М., Мир, 1965 г. 222 с. Cостояние отличное.
Рождественский Б.Л.. Лекции по математическому анализу. . 1972
Description: М. Наука 1972г. 544с. Твердый издательский переплет, Обычный формат. Основное внимание уделяется глубокому изложению основных понятий анализа и методов качественного исследования. В связи с запросами вычислительной математики широко освещаются методы приближенных вычислений, основанные на теоремах и понятиях математического анализа.
Попов Ю.П., Пухначев Ю.В.. Математика в образах.. 1989
Description: Научно-популярное издание. М.: Знание 1989г. 208 с. Палiтурка / переплет: Мягкий, обычный формат. Математические формулы - лишь удобный язык для изложения идей и методов математики. Сами же эти идеи и методы можно описать, используя привычные и наглядные образы из окружающей жизни. Следуя этому принципу авторы в доступной и увлекательной форме излагают основные понятия теории множеств, числовых рядов, дифференциального и интегрального исчисления и других разделов математики. Книга рассчитана на слушателей народных университетов естественнонаучных знаний и широкий круг читателей.
Румшиский Л.З.. Математическая обработка результатов эксперимента. 1971
Description: М.: Наука, Физматлит, 1971. — 192 с. Настоящее справочное руководство имеет своей целью дать экспериментатору необходимые сведения по основным методам обработки и анализа результатов опыта. Все рекомендации сопровождаются примерами их практического применения с указаниями об экономных методах расчета. Книга весьма полезна для начинающих знакомство с различными методами статистического анализа собираемых данных.
Стоян Ю.Г., Яковлев С.В.. Математические модели и оптимизационные методы геометрического проектирования. . 1986
Description: Стоян Ю.Г., Яковлев С.В. Математические модели и оптимизационные методы геометрического проектирования. К.: Наукова думка, 1986г. 268 с. твердый переплет,, Слегка увеличенный формат. В монографии на основе формализации понятия геометрической информации и введенного пространства информации предлагается единый подход к исследованию задач геометрического проектирования. В зависимости от вида отображения геометрической информации выделяются классы задач геометрического проектирования.
Соминский И.С.. Метод математической индукции.. 1955
Description: Серия: Популярные лекции по математике. Выпуск 3. Издание 3-е. М.: Гостехиздат 1955г. 48 с. Палiтурка / переплет: Мягкий, обычный формат. Для учащихся старших классов, студентов младших курсов педвузов, университетов, втузов. Может быть использована в школьном математическом кружке. С о д е р ж а н и е. Введение. Метод математической индукции. Примеры и упражнения. Доказательство некоторых теорем элементарной алгебры методом математической индукции. Решения.
Description of seller: следы воды
Федорюк М.В.. Метод перевала. . 1977
Description: Главная редакция физико-математической литературы. М. Наука 1977г. 368 с. Палiтурка / переплет: твердый, увеличенный формат. В книге рассмотрены основные методы асимптотических оценок интегралов, содержащих большой параметр: метод Лапласа, метод стационарной базы, метод перевала, как в одномерном, так и в многомерных случаях.
Тихонов А.Н., Арсенин В.Я.. Методы решения некорректных задач. . 1974
Description: Изд. 2-е, перераб. и доп. Учебное пособие для студентов вузов, обучающихся по специальности Прикладная математика. М. Наука 1974г. 288 с. Палiтурка / переплет: твердый, обычный формат. Книга посвящена методам построения устойчивых приближенных решений широкого класса некорректно поставленных математических задач. К этому классу задач относится большой круг так называемых обратных задач, к которым приводят проблемы обработки и интерпретации экспериментальных наблюдений. Освещаются вопросы нахождения обобщенных решений обратных задач, так как в классической постановке эти задачи могут не иметь решений.
Гальперин Г.А., Толпыго А.К.. Московские математические олимпиады.. 1986
Description: Книга для учащихся. Под ред. А.Н.Колмогорова. М. Просвещение 1986г. 303 с., илл. Палiтурка / переплет: твердый,,,, увеличенный формат. Книга содержит задачи всех московских математических олимпиад за 50 лет их проведения. К большинству задач даны ответы, указания, решения. В книге много интересных задач, связанных с современными научными проблемами. Книга предназначена для учащихся VII-X
Бубенников А. В., Громов М. Я.. Начертательная геометрия.. 1973
Description: Учебник. М. Высшая школа 1973г. 416 с., ил. твердый переплет, увеличенный формат. В учебнике изложены вопросы построения чертежей простейших геометрических образов - точек, прямых, плоскостей. Даны схемы решения позиционных задач основным способом и способами преобразования эпюра Монжа. Рассмотрены виды многогранников, плоские и пространственные кривые линии, поверхности основных видов и сложных форм. Указаны графические методы определения площадей кинематических поверхностей и методы определения объемов тел, ограниченных поверхностями; даны понятия о кривизне поверхностей.
Касаткин В.Н.. Необычные задачи математики. . 1987
Description: К. Радянська школа, 1987г. 128 с. Твердый переплет.,, уменьшенный формат. В книге с помощью системы занимательных задач раскрываются математические основы теории автоматов. Значительное внимание уделяется алгебре логики и теории графов.
Бом Д.. Общая теория коллективных переменных.. 1964
Description: Перевод с английского. Серия: `Теоретическая физика`. М.: Мир, 1964г. 152 с. мягкий переплет, Обычный формат. Настоящая книга представляет собой перевод курса лекций известного физика-теоретика Д. Бома, прочитанных в летней школе теоретической физики в Лезуш (Франция). Читателям уже знакома ранее вышедшая книга Д. Бома `Квантовая теория` (Физматгиз, 1961 г.). Предлагаемые лекции содержат систематическое изложение одного из методов теоретического исследования системы заряженных частиц, а именно метода коллективных переменных, широко применяемого, в частности, в физике твердого тела и физике плазмы. В книге рассматриваются в основном классические системы, хотя затрагиваются также и квантовые (ферми-системы). В целом книга рассчитана на физиков - как теоретиков, так и экспериментаторов, желающих познакомиться с этим методом и облегчить себе изучение оригинальных журнальных статей.
Яворский, И. В.. Отображение симметрии физического пространства в пространстве Фурье . 1964
Description: (Расчетные таблицы)И. В. Яворский. - М. : Высш. шк., 1964. - 176 с
Каплан И.А.. Практические занятия по высшей математике.. 1965
Description: (Аналитическая геометрия на плоскости и в пространстве, дифференциальное исчисление функций одного и многих переменных) Изд-е 2-е, доп. и перер. Учебник для технических вузов Харьков Издательство Харьковского университета 1965г. 575 с. Палiтурка / переплет: Твердый, Слегка увеличенный формат.
Каплан И.А.. Практические занятия по высшей математике. Часть III.. 1965
Description: Харьков. Издательство Харьковского университета. 1965г. 376с. Палiтурка / переплет: твердый,, увеличенный формат. Интегральное исчисление функций одной независимой переменной. Интегрирование дифференциальных уравнений.
Кириллов А.А.. Пределы. . 1973
Description: Серия: Библиотечка физико-математической школы. Выпуск 2. Издание второе, переработанное. М. Наука 1973г. 96 с., илл. Палiтурка / переплет: мягкий, обычный формат. Книга состоит из задач: подготовительных, связанных с определнием предела, на вычисление пределов. Книга может служить учебником по теме ``Пределы``. При составлении книги автор широко пользовался ``математическим фольклором``.
Канторович А.В., Крылов В.И.. Приближенные методы высшего анализа. . 1962
Description: Изд. 5-е, исправленное. Ред. Акилов Г.П. М. Физматгиз 1962г. 708 с. Палiтурка / переплет: твердый, увеличенный формат. Задачи математической физики получили широкое применение в самых различных областях техники. Обычно в курсах математической физики излагаются общие методы решения, имеющие чисто теоретический характер и не дающие фактической возможности действительного нахождения решения таких задач, а также классические примеры точных решений для простейших случаев. В практических же проблемах техники часто встречаются задачи, где точное решение либо не может быть найдено, либо имеет настолько сложное строение, что им трудно пользоваться при расчетах. Приближенные методы решения задач математической физики, в особенности метод сеток и вариационные методы, развитые в начале ХХ столетия, были встречены техниками с большим интересом и сразу получили широкое распространение. Основные достоинства приближенных методов состояли в том, что они являлись универсальными и эффективными, так как позволяли находить приближенное решение для широкого класса случаев и при применении требовали простых и вполне осуществимых вычислений. В книге сделана попытка систематического изложения главнейших приближенных эффективных методов. Наряду с методами решения уравнений в частных производных, значительное место в ней отведено изложению комфортного отображения и приближенного решения интегральных уравнений.
Расулов М.Л.. Применение метода контурного интеграла. 1975
Description: к решению задач для параболических систем второго порядка. М. Наука 1975г. 256с. твердый переплет, Обычный формат. Монография состоит из двух частей. Первая посвящена систематическому изложению разработанного автором вычетного метода и его применению к решению широких классов задач дифференциальных уравнений, не поддающихся решению известными методами. Во второй части дается новый метод, названный методом контурного интеграла, в применении к исследованию весьма общих линейных смешанных задач дифференциальных уравнений.
Пайнс Д.. Проблема многих тел. . 1963
Description: М. ИЛ 1963г. 190с. мягкий переплет, Обычный формат. Настоящая книга представляет собой развернутый обзор статистической теории систем многих частиц и применяемых в ней методов исследования, в особенности методов, связанных с исследованием уравнений движения и функций Грина. Из приложений рассмотрены неидеальные ферми- и бозе системы, причем автор уделяет основное внимание не столько деталям расчета того или иного эффекта, сколько обсуждению физической стороны вопроса, целесообразности того или иного подхода, справедливости выбранного приближения и получаемых с его помощью результатов и т.д.
Каплан Я.Л. Рівняння. . 1968
Description: Серія: `Бібліотека вчителя математики`. К.: Радянська школа, 1968г. 406 с. твердый переплет,, Обычный формат. У цій книжці наведено основні відомості про рівняння, пояснено причини появи сторонніх і втрати справжнів коренів рівняння. Розрахована на вчителів середньої школи.
Горнштейн П., Поляк Н., Тульчи.. Решение конкурсных задач по математике. (М.И. Сканави.). 1992
Description: Горнштейн П., Поляк Н., ТульчиРешение конкурсных задач по математике нский В. из сборника под редакцией М.И. Сканави. Группа В. Киев РИА Текст, МП ОКО 1992г. 246 с. Палiтурка / переплет: Мягкий, обычный формат. В пособии содержатся решения задач повышенной трудности из известного `Сборника конкурсных задач по математике для поступающих во втузы` под редакцией М.И. Сканави. Для абитуриентов, слушателей подготовительных курсов, преподавателей математики, репетиторов.
Романовский П.И.. Ряды Фурье. Теория поля. Аналитические и специальные функции. Преобразование Лапласа. . 1964
Description: Романовский П.И. Ряды Фурье. Теория поля. Аналитические и специальные функции. Преобразование Лапласа. Издание 4-е. Избранные главы высшей математики для инженеров и студентов ВТУЗов М. Физматгиз 1964г. 304 с. Палiтурка / переплет: Твердый, Обычный формат.