Mathematics
Жиль Ж., Пелегрен М., Декольн П.. Теория и техника следящих систем. . 1961
Description: Перевод Баткова А.М., Ускова А.С. и Агеевой М.И.. Под редакцией Солодовникова В.В.. М. Машгиз. 1961г. 804с. Твердый переплет, обычный формат.
Прохоров Ю.В., Розанов Ю.А.. Теория вероятностей. Основные понятия. Предельные теоремы.. 1967
Description: Прохоров Ю.В., Розанов Ю.А. Теория вероятностей. Основные понятия. Предельные теоремы. Случайные процессы. М. Наука 1967г. 496 с. Палiтурка / переплет: твердый, обычный формат. Книга представляет собой обзор важнейших результатов, методов и направлений современной теории вероятностей. Основные понятия теории вероятностей, важнейшие теоретико-вероятностные модели, некоторые методы оптимального регулирования, линейная фильтрация, элементы теории передачи стационарных сообщений по каналам связи - вот далеко не полный перечень разделов, представляющих интерес для читателей, соприкасающихся с теорией вероятностей, но не являющихся специалистами в этой области. В книге есть и разделы, предназначенные читателям, работающим в теории вероятностей и смежных направлениях, сюда относятся основания теории, некоторые аспекты общей теории случайных процессов, предельные теоремы и др.
Прохоров Ю.В., Розанов Ю.А.. Теория вероятностей.. 1987
Description: Основные понятия. Предельные теоремы. Случайные процессы. Серия: Справочная математическая библиотека. Изд. 3-е, перераб. М. Наука 1987г. 400 с. Палiтурка / переплет: твердый, увеличенный формат. Книга представляет собой обзор важнейших результатов, методов и направлений современной теории вероятностей. Основные понятия теории вероятностей, важнейшие теоретико-вероятностные модели, некоторые методы оптимального регулирования, линейная фильтрация, элементы теории передачи стационарных сообщений по каналам связи - вот далеко не полный перечень разделов, представляющих интерес для читателей, соприкасающихся с теорией вероятностей, но не являющихся специалистами в этой области. В книге есть и разделы, предназначенные читателям, работающим в теории вероятностей и смежных направлениях, сюда относятся основания теории, некоторые аспекты общей теории случайных процессов, предельные теоремы и др.
Бейтмен Г., Эрдейи А.. Таблицы интегральных преобразований. Том 1.. 1969
Description: Преобразования Фурье, Лапласа, Меллина. Пер. с англ. Н.Я. Виленкина. Справочная математическая библиотека. М.: Наука, 1969г. 344 с. Палiтурка / переплет: твердый, обычный формат. Книга представляет собой перевод первого тома вышедших в США Таблиц интегральных преобразований, непосредственно примыкающих к ранее опубликованному справочнику Высшие трансцендентные функции. Первый том содержит таблицы для преобразований Фурье, Лапласа и Меллина. Издание уникально по полноте охвата материала.
Розенфельд Б.А.,Сергеева Н.Д.. Стереографическая проекция.. 1973
Description: Розенфельд Б.А.,Сергеева Н.Д. Стереографическая проекция. 1973. 46 с.
Растригин Л.А.. Статистические методы поиска. . 1968
Description: М. Наука. 1968г. 376 с. Палiтурка / переплет: Твердый, Обычный формат.
Бевз Г.П., Фильчаков П.Ф. и др.. Справочник по элементарной математике. Для поступающих в вузы.. 1972
Description: К. Наукова думка 1972г. 528 с. Палiтурка / переплет: Твердый, Обычный формат. Справочник содержит сведения по арифметике, алгебре и элементарным функциям, в том числе тригонометрическим, планиметрии и стереометрии с указаниями о способах решения примеров и задач различных типов и степеней трудности. Приведены исторические справки, список литературы. подробный указатель.
Швецов К.И., Бевз Г.П.. Справочник по элементарной математике. Арифметика, алгебра.. 1965
Description: К. Наукова думка 1965г. 416 с. Палiтурка / переплет: твердый, уменьшенный формат. Справочник охватывает все вопросы школьной программы по арифметике, алгебре, включая таблицы, функции и графики. Здесь, кроме материала школьной программы, читатель найдет справочные указания о способах решения «типовых» примеров и задач, исторические справки и литературу. В справочнике даны указания, как проводить операции на счетах, арифмометре и логарифмической линейке.
Корн Г. Корн Т.. Справочник по математике для научных работников и инженеров.. 1970
Description: Определения, теоремы, формулы. М. Наука 1970г. 719 с. Палiтурка / переплет: Твердый. , Слегка увеличенный формат. Справочник содержит сведения по большинству областей математики, которые могут понадобиться научному работнику и инженеру-исследователю. Опустив все доказательства и широко используя табличную форму изложения, авторы смогли сосредоточить в одной книге большой фактический материал по следующим разделам: высшая алгебра, аналитическая и дифференциальная геометрия, математический анализ (включая интегралы Лебега и Стилтьеса), векторный и тензорный анализ, криволинейные координаты, функции комплексного переменного, операционное исчисление, дифференциальные уравнения обыкновенные и с частными производными, вариационное исчисление, абстрактная алгебра, матрицы, линейные векторные пространства, операторы и теория представлений, интегральные уравнения, краевые задачи, теория вероятностей и математическая статистика, численные методы анализа, специальные функции.
Бронштейн И., Семендяев К.. Справочник по математике для инженеров и учащихся втузов.. 1948
Description: М.-Л. Гостехиздат 1948г. 556 с. Палiтурка / переплет: Твердый, уменьшенный формат. Доступный, удобный, краткий в изложении справочник содержит основные сведения по математике, необходимые в учебной и практической работе инженерам и студентам.
Бронштейн И.Н., Семендяев К.А.. Справочник по математике для инженеров и учащихся втузов. 1986
Description: М. Наука 1986г. 544 с. Палiтурка / переплет: Твердый, Увеличенный формат
Чистяков В. Д.. Сборник старинных задач по элементарной математике. 1962
Description: Чистяков В. Д. Сборник старинных задач по элементарной математике с историческими экскурсами и подробными решениями. Минск Издательство МВССПО БССР 1962г. 204 с. Мягкий переплет,, уменьшенный формат. Любопытное и познавательное издание для всех любителей истории развития точных наук. Представлены тексты стариных задач по элементарной математике, сгруппированые по отдельным разделам: Задачи Вавилона. Задачи Египтпа. Задачи Греции. Задачи Китая.
Берман Г. Н.. Сборник задач по курсу математического анализа. . 1972
Description: Изд. 19-е, стереотипное. М.: Наука. Гл. ред. физ.-мат. лит., 1972г. 416 с. Палiтурка / переплет: Твердый, слегка увеличенный формат. Содержание: Функции. Предел. Непрерывность. Производная и дифференциал. Дифференциальное исчисление. Исследование функций и кривых линий. Определенный интеграл. Неопределенный интеграл. Интегральное исчисление. Способы вычисления определенных интегралов. Несобственные интегралы. Применения интеграла. Ряды. Функции нескольких переменных. Дифференциальное исчисление. Многомерные интегралы и кратное интегрирование. Криволинейные интегралы и интегралы по поверхности. Дифф. уравнения. Тригонометрические ряды. Элементы теории поля.
Белов В.В., Воробьев Е.М.. Сборник задач по дополнительным главам математической физики.. 1978
Description: Учебное пособие для втузов. М.: Высшая школа, 1978г. 271 с., илл. твердый переплет,, Обычный формат. В книге изложены некоторые современные методы математической физики: опративные методы решения дифференциальных и разностных уравнений, методы интегрирования уравнений Гамильтона-Якоби с помощью лагранжевых многообразий, метод ВКБ и метод канонического оператора Маслова.
Минорский В. П.. Сборник задач по высшей математике. . 1987
Description: Учебное пособие для студентов высших технических учебных заведений. Издание тринадцатое. М. Наука. 1987 г. 352с. твердый переплет, обычный формат.
Клетеник Д.В.. Сборник задач по аналитической геометрии.. 1972
Description: Редакция Физико-математической литературы. 1972г. 240 с.
Кручкович Г.И., Мордасова Г.М. и др.. Сборник задач и упражнений по специальным главам высшей математики.. 1970
Description: Учеб.пособ.для втузов. Под ред. Г.И. Кручковича М. Высшая школа 1970г. 512 с. Палiтурка / переплет: Твердый, Слегка увеличенный формат. Сборник включает теоретические сведения, задачи и упражнения по следующим спецглавам курса ВМ: матричное исчисление, скалярные и векторные поля, ФКП, специальные функции, преобразования Фурье, операционное исчисление, уравнения математической физики, основы теории вероятностей. Типовые задачи даны с подробными решениями и пояснениями. Приведены задачи для упражнений. К отдельным задачам даются методические указания.
Романовский П.И.. Ряды Фурье. Теория поля. Аналитические и специальные функции. Преобразование Лапласа. . 1964
Description: Романовский П.И. Ряды Фурье. Теория поля. Аналитические и специальные функции. Преобразование Лапласа. Издание 4-е. Избранные главы высшей математики для инженеров и студентов ВТУЗов М. Физматгиз 1964г. 304 с. Палiтурка / переплет: Твердый, Обычный формат.
Горнштейн П., Поляк Н., Тульчи.. Решение конкурсных задач по математике. (М.И. Сканави.). 1992
Description: Горнштейн П., Поляк Н., ТульчиРешение конкурсных задач по математике нский В. из сборника под редакцией М.И. Сканави. Группа В. Киев РИА Текст, МП ОКО 1992г. 246 с. Палiтурка / переплет: Мягкий, обычный формат. В пособии содержатся решения задач повышенной трудности из известного `Сборника конкурсных задач по математике для поступающих во втузы` под редакцией М.И. Сканави. Для абитуриентов, слушателей подготовительных курсов, преподавателей математики, репетиторов.
Каплан Я.Л. Рівняння. . 1968
Description: Серія: `Бібліотека вчителя математики`. К.: Радянська школа, 1968г. 406 с. твердый переплет,, Обычный формат. У цій книжці наведено основні відомості про рівняння, пояснено причини появи сторонніх і втрати справжнів коренів рівняння. Розрахована на вчителів середньої школи.
Пайнс Д.. Проблема многих тел. . 1963
Description: М. ИЛ 1963г. 190с. мягкий переплет, Обычный формат. Настоящая книга представляет собой развернутый обзор статистической теории систем многих частиц и применяемых в ней методов исследования, в особенности методов, связанных с исследованием уравнений движения и функций Грина. Из приложений рассмотрены неидеальные ферми- и бозе системы, причем автор уделяет основное внимание не столько деталям расчета того или иного эффекта, сколько обсуждению физической стороны вопроса, целесообразности того или иного подхода, справедливости выбранного приближения и получаемых с его помощью результатов и т.д.
Расулов М.Л.. Применение метода контурного интеграла. 1975
Description: к решению задач для параболических систем второго порядка. М. Наука 1975г. 256с. твердый переплет, Обычный формат. Монография состоит из двух частей. Первая посвящена систематическому изложению разработанного автором вычетного метода и его применению к решению широких классов задач дифференциальных уравнений, не поддающихся решению известными методами. Во второй части дается новый метод, названный методом контурного интеграла, в применении к исследованию весьма общих линейных смешанных задач дифференциальных уравнений.
Канторович А.В., Крылов В.И.. Приближенные методы высшего анализа. . 1962
Description: Изд. 5-е, исправленное. Ред. Акилов Г.П. М. Физматгиз 1962г. 708 с. Палiтурка / переплет: твердый, увеличенный формат. Задачи математической физики получили широкое применение в самых различных областях техники. Обычно в курсах математической физики излагаются общие методы решения, имеющие чисто теоретический характер и не дающие фактической возможности действительного нахождения решения таких задач, а также классические примеры точных решений для простейших случаев. В практических же проблемах техники часто встречаются задачи, где точное решение либо не может быть найдено, либо имеет настолько сложное строение, что им трудно пользоваться при расчетах. Приближенные методы решения задач математической физики, в особенности метод сеток и вариационные методы, развитые в начале ХХ столетия, были встречены техниками с большим интересом и сразу получили широкое распространение. Основные достоинства приближенных методов состояли в том, что они являлись универсальными и эффективными, так как позволяли находить приближенное решение для широкого класса случаев и при применении требовали простых и вполне осуществимых вычислений. В книге сделана попытка систематического изложения главнейших приближенных эффективных методов. Наряду с методами решения уравнений в частных производных, значительное место в ней отведено изложению комфортного отображения и приближенного решения интегральных уравнений.
Кириллов А.А.. Пределы. . 1973
Description: Серия: Библиотечка физико-математической школы. Выпуск 2. Издание второе, переработанное. М. Наука 1973г. 96 с., илл. Палiтурка / переплет: мягкий, обычный формат. Книга состоит из задач: подготовительных, связанных с определнием предела, на вычисление пределов. Книга может служить учебником по теме ``Пределы``. При составлении книги автор широко пользовался ``математическим фольклором``.
Каплан И.А.. Практические занятия по высшей математике. Часть III.. 1965
Description: Харьков. Издательство Харьковского университета. 1965г. 376с. Палiтурка / переплет: твердый,, увеличенный формат. Интегральное исчисление функций одной независимой переменной. Интегрирование дифференциальных уравнений.